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Define "slide speed" vb - vr as function of t such that 
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Momentum considerations 
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Energy & Work considerations 
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L  total sliding distance 
T  time available for sliding 
K  constant fluid dynamic term linking drag force and shell velocity 
 
vr  rower velocity 
vb  shell velocity 
∆ vb, ∆ vr changes in vb, vr over interval ∆t 
 
 
 
These results have been derived by considering the system, at time t, as two masses mb 
and mr, representing the boat (plus feet) travelling at velocity vb and the rower (less feet) 
travelling at velocity vr. Each mass has an equal and opposite force (F) acting on it, 
representing the force exerted by the rower to draw the shell towards him/her. Also, the 
boat has a water drag force acting on it which has been assumed to be equal to some 
constant K times the square of the boat's velocity. K has been estimated from real data by 
choosing a value which best fits observed shell deceleration measured using the 
accelerometers. My data show that K varies from boat type to boat type. 
 
Consideration of momentum change over a small time interval ∆t (during which the 
velocities have also changed by increments ∆ vb and ∆ vr) produces a difference equation 
which is then integrated with a resolution of ∆t = 0.0001 seconds to estimate the boat and 
rower velocities over the entire fixed time interval T and fixed "sliding distance" L. L and T 
are held constant for the purposes of these calculations. 
 
Boat and rower velocities derived by integration from: 
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Furthermore, the relative velocity profile of the two masses (aka "sliding speed" or (vb - vr)), 
is pre-specified as vb - vr = f(t), a function of t. Below are presented the formulae for two of 
the profiles, both appropriately scaled to cover exactly L in time T. The first formula is a sine 
curve (typical sliding profile), the second a curve of the form t2sin(t) which effectively shears 
the whole sine curve to the right aka “late-sliding profile”. The “early sliding profile” is 
created by using the second formula below, but substituting π-t for t and reversing the sign 
of the derivative. 
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The key quantity to be determined is the total distance travelled, for different flavours of f(t), 
by the system Centre of Mass (“CoM”) during the backstops-to-frontstops interval, starting 
at a given initial velocity over a given time T as the boat is drawn back a given relative 
distance L. Also calculated are the power consumed by the system as this occurs, and the 
velocity of the CoM at the end of this interval. 
 
The results should demonstrate if one recovery profile might be different from or better than 
another. 


